the level of β-endorphin to normal values, which correspond to the group of control and a moderate decrease in serotonin and dopamine levels by 28.7% and 31.6% in accordance.

Prospects for further research. Our studies show improving the condition of patients under the influence of cilostazol, increasing the distance of painless walking, improving the psycho-emotional state, approximation to normal values of endogenous bioregulators.

References:

Key words: arterial hypertension, cilostazol, beta-endorphin, serotonin, dopamine

Accepted for printing on 17 Sept 2018

DOI: 10.29256/v.02.02.2018.escbm34
Acromegaly is a severe neuroendocrine disease that is caused by excessive secretion of growth hormone and insulin-like growth factors. The disease is burdened by the development of comorbid pathology, in particular, disorders of carbohydrate metabolism. In adipose tissue growth hormone causes lipolysis, which leads to increased lipotoxicity, increase the number of substrates for gluconeogenesis and high production of glucose by the liver. Secondary diabetes mellitus complicates the course of the underlying disease, worsening the quality and reducing the life expectancy of patients with acromegaly. Currently, the diagnostic practice is being implemented studies of candidate genes, mutations of which cause the development of various diseases. Currently, more than 1,500 genes associated with multifactorial human diseases are known. The study of polymorphic markers (polymorphisms of Pro12Ala in PPARG gene, Pro12Ala PPARG2 gene polymorphism, Gly482Ser polymorphism of the PPARGC1A gene polymorphism Ala203Pro gene PPARGC1B, Arg223Glr polymorphism of gene LEPR, polymorphism A23525T gene FTO, PPARG C1431T polymorphism of the gene) allows to assess the risk of developing diabetes and obesity in the population.

Materials and Methods. Currently, the register of the Ryazan region consists of 65 patients with acromegaly. It includes 56 (86.1%) women, 9 (13.9%) men aged 56.4±1.2 years. 26 (40%) patients underwent surgical treatment – endonasal transphenoidal adenomectomy, 21 (32.3%) is on primary drug therapy with somatostatin analogues (Octreotide-Depo, Octreotide-Long 20-40 mg 1 time in 28 days) in the form of monotherapy, as well as in combination with dopamine receptor agonists (cabergoline 0.5 mg 2-3 times a week), 18 (27.7%) underwent gamma-ray therapy and stereotactic radiosurgery. In the endocrinology Department of GBU RO Regional clinical hospital 35 people took part in the genetic research, 1 group consisted of 13 patients with acromegaly with secondary diabetes mellitus, 2 group of 10 patients with acromegaly without diabetes, 3 group -12 patients with type 2 diabetes. The study involved patients who meet the inclusion criteria: signed informed voluntary consent, age of patients from 30 to 67 years, diagnosis of “Acromegaly” and / or “type 2 Diabetes mellitus”, established according to the clinical recommendations of the Russian Association of Endocrinologists. The study did not include patients with decompensated endocrine, cardiovascular disease, severe liver and kidney dysfunction, type 1 diabetes.. Patients with DM received oral hypoglycemic therapy in the form of mono-, combination therapy, as well as in combination with insulin. Determination of genetic polymorphism of diabetes mellitus and obesity [PPARG, PPARG2, PPARGC1A, PPARGC1B, LEPR, FTO] was carried out on the basis of the Central research laboratory of Ryazan state medical University by allele-specific PCR with subsequent electrophoretic separation of amplification products. The material for molecular genetic analysis was DNA samples was isolated from whole blood leukocytes using the reagent “DNA-Express blood”.

Results. Violation of carbohydrate metabolism was revealed in 37 (56.9%) patients with acromegaly. 7 (18.9%) revealed impaired fasting glycemia, 3 – (8.1%) – impaired glucose tolerance, 27 (73%) – diabetes. The analysis of the distribution of gene polymorphisms in the examined groups (acromegaly + DM, acromegaly, type 2 diabetes), significant differences (p<0.05) detected by the Gly482Ser genotype at the PPARGC1A gene (mutation 1aPPARG). In the study of this mutation, the predominance of the Gly482Ser genotype in the group of patients with type 2 diabetes (83.4%) is noteworthy. The number of mutant alleles 482Ser in the PPARGC1A gene (mutation 1aPPARG) , 203Pro PPARGC1B (mutation 1bPPARG) tends to increase in the group of patients with type 2 DM (50% and 25%). The comparative analysis of the distribution of the frequencies of genetic alleles of diabetes mellitus showed no differences in patients with isolated acromegaly and a combination of acromegaly and diabetes. Thus, according to the register of the Ryazan region, there is a high prevalence of diabetes mellitus in patients with acromegaly. The development of this comorbid pathology is due to a decrease in insulin sensitivity, inhibition of glucose intake into peripheral tissues, stimulation of gluconeogenesis in the liver as a result of growth hormone

Research perspective. The heterogeneous genotype of the PPARGC1A gene (Gly482Ser) is associated with the development of type 2 diabetes, and can be used to diagnose and predict the development of this disease. The study of the prevalence, pathogenesis of diabetes, glycemic variability in patients with acromegaly has scientific and practical interest for improving the treatment of comorbid pathology in neuroendocrine diseases.

References: